Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends.

نویسندگان

  • Koji Kikuchi
  • Yoshihito Taniguchi
  • Atsushi Hatanaka
  • Eiichiro Sonoda
  • Helfrid Hochegger
  • Noritaka Adachi
  • Yasuo Matsuzaki
  • Hideki Koyama
  • Dik C van Gent
  • Maria Jasin
  • Shunichi Takeda
چکیده

Homologous recombination (HR) requires nuclease activities at multiple steps, but the contribution of individual nucleases to the processing of double-strand DNA ends at different stages of HR has not been clearly defined. We used chicken DT40 cells to investigate the role of flap endonuclease 1 (Fen-1) in HR. FEN-1-deficient cells exhibited a significant decrease in the efficiency of immunoglobulin gene conversion while being proficient in recombination between sister chromatids, suggesting that Fen-1 may play a role in HR between sequences of considerable divergence. To clarify whether sequence divergence at DNA ends is truly the reason for the observed HR defect in FEN-1(-/-) cells we inserted a unique I-SceI restriction site in the genome and tested various donor and recipient HR substrates. We found that the efficiency of HR-mediated DNA repair was indeed greatly diminished when divergent sequences were present at the DNA break site. We conclude that Fen-1 eliminates heterologous sequences at DNA damage site and facilitates DNA repair by HR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATM Release at Resected Double-Strand Breaks Provides Heterochromatin Reconstitution to Facilitate Homologous Recombination

Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactiva...

متن کامل

RecG Directs DNA Synthesis during Double-Strand Break Repair

Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The R...

متن کامل

The role and fate of DNA ends for homologous recombination in embryonic stem cells.

We have analyzed the gene-targeting frequencies and recombination products generated by a series of vectors which target the hprt locus in embryonic stem cells and found the existence of alternative pathways that depend on the location of the double-strand break within the vector. A double-strand break in the targeting homology was found to increase the targeting frequency compared with a doubl...

متن کامل

Restriction-stimulated homologous recombination of plasmids by the RecE pathway of Escherichia coli.

To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI+ cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the biol...

متن کامل

Which one is the real matchmaker for the pair?

A fundamental question for meiosis is how homologous chromosomes (homologs) find each other and pair together to ensure homologous recombination and segregation. Intuitively, the answer to the question is related to the interaction between homologous sequences. However, that is not the whole story according to some studies on the role of cohesins in homolog pairing. The most recent one by Ishig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 16  شماره 

صفحات  -

تاریخ انتشار 2005